Course	Course Name	Theory	Practical	Tutorial	Theory	TW/Pra	Tutorial	Total
Code						ctical		
ITL302	Data Structures		2			1		1
	Lab							

	Course Name	Examination Scheme						
Course Code		Theory Marks						
		Internal assessment			End	Term	Oral & Practical	Total
		Test1	Test2	Avg. of two Tests	Sem. Exam	Work		10.00
ITL302	Data Structures Lab					25	25	50

Lab Objectives: Students will try:

- 1. Understand and remember algorithms and its analysis procedure.
- 2. Introduce the concept of data structures through ADT including List, Stack, Queues .
- 3. To design and implement various data structure algorithms.
- 4. To introduce various techniques for representation of the data in the real world.
- 5. To develop application using data structure algorithms.
- 6. Compute the complexity of various algorithms.

Lab Outcomes: Students will be able to:

- 1. Select appropriate data structures as applied to specified problem definition.
- 2. Implement operations like searching, insertion, and deletion, traversing mechanism etc. on various data structures.
- 3. Students will be able to implement Linear and Non-Linear data structures.
- 4. Implement appropriate sorting/searching technique for given problem.
- 5. Design advance data structure using Non-Linear data structure.
- 6. Determine and analyze the complexity of given Algorithms.

Prerequisite: C Programming Language

Hardware Requirement:	Software requirement:
PC i3 processor and above	Turbo/Borland C complier.

Detailed Syllabus:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Introduction of C programming language		
I	Stack	Implementations of stack menu driven program	04	LO1
		2. Implementation of multistack in one array.		LO2
		3. *Implementations of Infix to Postfix Transformation and its evaluation program.		LO3
		4. Implementations of Infix to Prefix Transformation and its evaluation program.		LO6
II	Queue	Implementations of circular queue menu driven program	04	LO1
				LO2
		2. * Implementations of double ended queue menu driven program		LO3
		3. Implementations of queue menu driven program		LO6
		4. Implementation of Priority queue program using array.		
III	Linked List	Implementations of Linked Lists menu driven	04	LO1
		program.		LO2
		2. *Implementation of different operations		LO3
		on linked list —copy, concatenate, split, reverse, count no. of nodes etc		LO6
		3. Implementation of polynomials operations (addition, subtraction) using Linked List.		
		4. Implementations of Linked Lists menu driven program (stack and queue)		
IV	Tree & Graph	1. Implementations of Binary Tree menu driven	04	LO1
		program		LO2
		2. Implementation of Binary Tree Traversal program.		LO3
		3. *Implementation of construction of expression tree using postfix expression.4. Implementations of BST program		LO6
		 5. Implementation of various operations on tree like – copying tree, mirroring a tree, counting the number of nodes in the tree, counting only 		

		leaf nodes in the tree. 6. Implementation of Preorder traversal of a threaded binary tree. 7. Implementations of Huffman code construction 8. Implementations of Graph menu driven program (DFS & BSF)	
V	Sorting	1. Implementations of Shell sort, Radix sort and Insertion sort menu driven program.	04 LO4
		2. *Implementations of Quick Sort, Merge sort	LO5
		and Heap Sort menu driven program3. Implementations of Advanced Bubble Sort,	LO6
		Insertion Sort and Selection Sort menu driven program	
VI	Searching		02 LO4
		Sequential, Interpolation Search) menu driven program	LO5
		2. *Implementation of hashing functions with different collision resolution techniques	LO6

Text Books:

- 1. Data structures using C by Tenenbaum, Langsam, Augenstein, Pearson.
- 2. Data Structures using C, ReemaThareja, Oxford.

Reference Books:

- 1. C and Data structures, Prof. P.S.Deshpande, Prof. O.G.Kakde, Dreamtech Press.
- 2. Data Structures A Pseudocode Approach with C, Richard F. Gilberg & Behrouz A. Forouzan, second edition, CENGAGE Learning.

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral & Practical Exam: An Oral & Practical exam will be held based on the above syllabus.